chemistry chula research 16

Ca and Pr substitution promoted the cell performance in LnSr3Fe3O10-δ cathode for solid oxide fuel cells


   The substitution of Ca for Sr in the LnSr3-xCaxFe3O10-δ (x = 0–1.5, Ln = La, Pr, and Sm), Ruddlesden-Popper (RP) intergrowth structure was investigated to determine how the physical and electrochemical properties of this potential cathode material in solid oxide fuel cells (SOFCs) are impacted. A small amount of Ca incorporated into the structure reduced the thermal expansion coefficient, improved the electrical conductivity, and increased power density by up to 30% of a La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte-supported single cell. The microstructure and oxygen permeability of the materials were independent of Ca substitution. A phase transformation of LaSr3-xCaxFe3O10-δ to perovskite was observed when the Ca composition of x > 1.0. Among the substitution of Pr and Sm for La in LaSr2.7Ca0.3Fe3O10-δ, only PrSr2.7Ca0.3Fe3O10-δ was pure with no phase transformation found. The co-substitution of Pr and Ca promoted the reduction of Fe, enhanced the oxygen permeation and active surface, and diminished the contact resistance at the cathode-electrolyte interlayer. The co-substitution of Ca and Pr delivered good electrochemical performance of approximately 354 mWcm−2 at 800 °C on a 0.3 mm thick La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte-supported cell and the lowest area specific resistance (ASR).

Full paper

Nicharee Wongsawatgul, Jinda Yeyongchaiwat, Rojana Pornprasertsuk, Sato Kazunori, and Soamwadee Chaianansutcharit.

Contact Us

Department of Chemistry, Faculty of Science, Chulalongkorn University, 11th floor Mahamakut Building, Bangkok 10330 THAILAND
Tel: (+66)-2218- 7596 to 7 Fax: (+66)-2218-7598
Email: chemistry@chula.ac.th